Prediction of the in vivo interaction between midazolam and macrolides based on in vitro studies using human liver microsomes.
نویسندگان
چکیده
Clinical studies have revealed that plasma concentrations of midazolam after oral administration are greatly increased by coadministration of erythromycin and clarithromycin, whereas azithromycin has little effect on midazolam concentrations. Several macrolide antibiotics are known to be mechanism-based inhibitors of CYP3A, a cytochrome P450 isoform responsible for midazolam hydroxylation. The aim of the present study was to quantitatively predict in vivo drug interactions in humans involving macrolide antibiotics with different inhibitory potencies based on in vitro studies. alpha- and 4-Hydroxylation of midazolam by human liver microsomes were evaluated as CYP3A-mediated metabolic reactions, and the effect of preincubation with macrolides was examined. The hydroxylation of midazolam was inhibited in a time- and concentration-dependent manner following preincubation with macrolides in the presence of NADPH, whereas almost no inhibition was observed without preincubation. The kinetic parameters for enzyme inactivation (K'app and kinact) involved in midazolam alpha-hydroxylation were 12.6 microM and 0.0240 min-1, respectively, for erythromycin, 41.4 microM and 0.0423 min-1, respectively, for clarithromycin, and 623 microM and 0.0158 min-1, respectively, for azithromycin. Similar results were obtained for the 4-hydroxylation pathway. These parameters and the reported pharmacokinetic parameters of midazolam and macrolides were then used to simulate in vivo interactions based on a physiological flow model. The area under the concentration-time curve (AUC) of midazolam after oral administration was predicted to increase 2.9- or 3.0-fold following pretreatment with erythromycin (500 mg t.i.d. for 5 or 6 days, respectively) and 2.1- or 2.5-fold by clarithromycin (250 mg b.i.d. for 5 days or 500 mg b.i.d. for 7 days, respectively), whereas azithromycin (500 mg o.d. for 3 days) was predicted to have little effect on midazolam AUC. These results agreed well with the reported in vivo observations.
منابع مشابه
CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions.
The complexity of in vitro kinetic phenomena observed for CYP3A4 substrates (homo- or heterotropic cooperativity) confounds the prediction of drug-drug interactions, and an evaluation of alternative and/or pragmatic approaches and substrates is needed. The current study focused on the utility of the three most commonly used CYP3A4 in vitro probes for the prediction of 26 reported in vivo intera...
متن کاملInhibition of CYP3A by erythromycin: in vitro-in vivo correlation in rats.
The prediction of in vivo drug-drug interactions from in vitro enzyme inhibition parameters remains challenging, particularly when time-dependent inhibition occurs. This study was designed to examine the accuracy of in vitro-derived parameters for the prediction of inhibition of CYP3A by erythromycin (ERY). Chronically cannulated rats were used to estimate the reduction in in vivo and in vitro ...
متن کاملPrediction of metabolic clearance using cryopreserved human hepatocytes: kinetic characteristics for five benzodiazepines.
Predictions of intrinsic clearance (CL(int)) from human liver microsomes often underestimate in vivo observations. In this study, a series of five benzodiazepines was used as prototypic CYP3A4 substrates to investigate the prediction of clearance from the less studied alternative in vitro system, cryopreserved human hepatocytes. Formation of the two major metabolites from midazolam, triazolam, ...
متن کاملPrediction of midazolam-CYP3A inhibitors interaction in the human liver from in vivo/in vitro absorption, distribution, and metabolism data.
The extent of decreases in apparent hepatic clearance and intrinsic hepatic clearance of midazolam (MDZ) after intravenous administration of MDZ with concomitant oral administration of cimetidine (CIM), itraconazole (ITZ), or erythromycin (EM) was predicted using plasma unbound concentrations and liver unbound concentrations of inhibitors. When MDZ was concomitantly administered with CIM, the o...
متن کاملContribution of rat pulmonary metabolism to the elimination of lidocaine, midazolam, and nifedipine.
The contribution of the lung to drug metabolism was investigated in rats and the possibility of prediction of in vivo metabolism from in vitro studies using rat pulmonary microsomes was assessed. Lidocaine, midazolam, or nifedipine was administered to rats at a dose of 10 mg/kg by the intra-arterial, intravenous, and intraportal routes. The pulmonary extraction ratios of lidocaine, midazolam, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 31 7 شماره
صفحات -
تاریخ انتشار 2003